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Abstract

First popularized for Natural Language Processing tasks, the Transformer architec-
ture has spread to other domains including Computer Vision. The default setup for
the Vision Transformer architecture splits the input into patches and then applies
a linear transformation to each patch. Since then, researchers have tried other
approaches such as applying convolutions before the transformer layers, vector
quantization, mixed-resolution tokenization, and more. We survey techniques
and compare their effect on parameter counts, runtime, and final performance.
We conclude that the baseline itself — patch embeddings — offers an impressive
tradeoff when it comes to computational cost vs performance and is surprisingly
effective despite its limited capacity. The code for our experiments is available at
https://github.com/alexholdenmiller/bagel.

1 Introduction

The transformer architecture was originally proposed for language modeling applications [Vaswani
et al.;,|2023]]. Language modeling starts from discrete inputs (typically text represented as sequences
of characters) which are converted to continuous representations using tokenization followed by
a lookup table which stores an embedding vector for each unique token. Tokenization strategies
vary from full words, partial words using subword strategies like BytePair Encoding [[Sennrich et al.
2016] or WordPiece [Devlin et al.l 2019], single characters [Zhang et al., | 2016], or even bytes [Wang
et al., 2019, |Yu et al.l |2023]]. Typically, a positional encoding scheme is then used to modify the
embeddings (for example, by adding a learned embedding based on the absolute position). Finally,
the sequence of embeddings is fed into the transformer layers to complete semantic reasoning and
accomplish the task at hand.

The exact choice of this approach can have a significant impact on the downstream performance.
Word-based approaches suffer from "out-of-vocabulary” issues because rare words may appear in the
test set but not in the training set, and typically reserve and "out of vocabulary" token to store meaning
for rare words. Character-based or byte-based approaches do not have this issue, but the modeling
problem becomes much more difficult because a model needs to be able to compose the full meaning
of words from the meanings of the constituent characters rather than being able to store the meaning
of the full concept contained in the word on its own. Subword approaches attempt to bridge this gap
by looking for either the most frequent (BytePair) or most informative (WordPiece) subword units.
This results in learned units of meaning that are more informative than single characters and require
less composition by the model. This includes many full words: for example, LLaMA’s [[Touvron et al.,
2023]] tokenizer has the words “has”, “the”, and “words” as full tokens, but “token” and “izer” are
two separate tokens — a useful construction since the former can be used with many different endings
and the latter can be added to many different words. However, poor splits can also be a detriment
to the algorithm’s performance: see Figure[I|for an example of bad tokenization for mathematical
statements.
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What is 2406 minus 4205 plus 4252

Figure 1: GPT3’s [Brown et al., 2020] tokenizer (top) recognizes subwords within the numbers
themselves, meaning the model has to memorize unique meaning for these numbers and learn to
compose them depending on the ordering in which they appear. LLaMA’s tokenizer (bottom), by
contrast, does not form multi-digit subwords in order to always compose numbers from the individual
digits themselves.

Other domains have unique perceptual challenges to overcome. Rather than an input of discrete units,
other tasks feature continuous input data such as sequences of frequencies (audio) or two-dimensional
grids of brightness (images) with multiple channels (mono vs stereo or grayscale vs color). While
there is a similar need to reshape the input into the “expected” shape for a transformer, that is, a
sequence of embeddings, the practitioner has considerable freedom in how to conduct this reshaping,
including potentially devoting significant portions of the network parameter- or compute-capacity to
this initial processing. This choice has significant ramifications for how the network understands the
data (different priors on the transformation), the final performance of the network, and the data- and
compute-efficiency of the approach.

2 Method

We explore several different strategies for initial processing of input image data before feeding it into
a transformer trunk that we keep fixed-size across all different approaches.

In each approach, we prepend a “class token” to the sequence produced by the “tokenization”
algorithm and then add learned absolute positional encoding embeddings to each value in the
sequence.

2.1 Patch Embedding

We first try the default configuration for Vision Transformers: Patch Embeddings. In this approach, the
image is split into fixed-size squares and then each patch is flattened and linearly transformed before
the sequence of patches are fed into the network. This is easily implemented as a 2D convolution
where the stride is equal to the kernel size.

The size of the patches (in particular, relative to the image size) can be adjusted in order to tune the
“level of detail” of the model. Splitting the image into many, small patches allows the model to learn
to recognize small local patterns but is more costly computationally. Fewer, larger patches can be
processed more quickly, but may be too large to easily learn interesting patterns from the data.

2.2 Initial Convolutions

A natural alternative to the Patch Embedding is simply to apply normal convolutions. We explore a
variety of different numbers of convolutional layers, kernel sizes, and stride lengths. Greater strides
increases computational speed and low values here may not improve performance despite being
costly. Smaller kernel sizes may make it easier to learn very local patterns, while larger ones slightly
reduce the final output dimensions and thus result in a shorter sequence length for the transformer to
process and slightly save computation time on that side while costing more in computation during
the convolution itself. More convolutional layers drastically reduce the length of the sequence that
is fed into the transformer and thus the total computation time of the model, as each convolution
downsamples the input, while adding significantly to the total parameter count of the model.

2.3 Vector Quantization

After either applying the patch embedding or initial convolutions followed by a flattening, the model
will now have a sequence of embeddings that could be fed into the transformer. However, a step that
could be applied here before the transformer is vector quantization. Conceptually, one maintains a
“codebook” of concepts (referred to as “codes”) that may represent different concepts your model may
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Figure 2: VQ-VAE Encoding for ViT

recognize in the input. Each input embedding is mapped to a single code in the codebook, i.e. the one
which most closely resembles that input embedding. In fact, you can maintain a many codebooks,
each containing different sets of codes, and inputs are mapped to one code from each codebook which
are then combined back into a sequence of representations for the transformer that is the same size as
it was before the quantization step.

Codes are selected using a gumbel softmax with an annealed temperature during training or simply
an argmax during inference.

24 VQ-VAE

A VQ-VAE |van den Oord et al.|[2018]] architecture is trained on reconstruction tasks and the trained
encoder and vector quantize layer are used to obtain discrete latent representations or codes through a
novel parameterisation of the posterior distribution of (discrete) latents given an observation, which
is then classified using a vision transformer. The vector quantize layer calculates discrete latent
variables using the shared embedding space and assigns discrete codes to represent the latent in terms
of its nearest neighbours. The foward computations maps the latents to a one hot encoded vector of
the size of the discrete space, The combined set of parameters of this model are the encoder, decoder,
and the embedding space. For our experiments with a ViT, we are concerned with the encoder and
embedding space after training the VQ-VAE.

VQ-VAE learns a single codebook for all categories of images, and utilizes a single partition for the
latent space to assign each image feature an exclusive discrete representation. Figure [2] shows the
training of the VQ-VAE and the how the trained codebook space is leveraged for capturing image
features for classification tasks.

2.5 Mixed-Resolution Tokenization
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Figure 3: Mixed Resolution Tokenization

As discussed above, a default Vision Tranformer models process input images by dividing them into
a spatially regular grid of equal-size patches. In contrast, we utilize Mixed Resolution Tokens
[2023], splitting the image into a patch mosaic (see Figure [3) according to a saliency scorer, and
employ a standard Transformer architecture with 2D position embeddings. This ‘saliency score’ for a
patch p is calculated as:

Scorefeqr[p] = MSE(feat(impur)[p], feat(im)[p])
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Figure 4: Patch size 4 outperforms 2, 8, and 16 and isn’t too expensive to run.

where, feat is a CNN (torchvision distribution of a ShuffleNet-V2 |Zhang et al.| [2017], Ma
et al. [2018]] with ImageNet pre-trained weights), ¢m is an RGB image, and imyy,,- is the blurred
version of im.

Hence, Score eq estimates the semantic information loss from decreasing the resolution of an image
patch by comparing its original representation to its representation in a blurred image. Intuitively,
this score estimates how much semantic information is lost when we downsample an image patch.

3 Results

We evaluate most of our models by training for ~40 epochs on CIFAR10 Krizhevsky and Hinton
[2009] and then comparing validation accuracy. We fix image size to 32x32 for most images for ease
of quickly training. We use the OneCycle learning rate scheduler with Adam / AdamW, a learning
rate of 0.0006, weight decay of 0.1, batch size of 128, and dropout of 0.1. These were selected after
hyperparameter tuning for this setting.

We use a Vision Transformer trunk with an embedding dimension of 256, four attention heads, and
MLP dimension of 1024, and six layers. These were selected to achieve an architecture that trains
quickly yet gets fairly good performance.

For all experiments, our training and evaluation is done on a single Nvidia RTX8000 GPU.

3.1 Patch Embedding

With this encoder we are able to achieve an accuracy of 85% on the validation using a patch size of 4.
We also try patch sizes of 2, 8, and 16. All of these decrease performance. A patch size of 2 gets
similar performance but runs 410% slower. A patch size of 8 runs in 71% and patch size of 16 in
57% of the time, but with much worse performance. See Figure |4|for performance comparison.

3.2 Initial Convolutions

We first evaluate different configurations of only a single convolution. We try out different kernel
sizes, strides, and dilations.

Our best single-layer configuration achieves 87% accuracy (+2 from patch embedding), has kernel=5,
stride=3, dilate=1, has 2% more parameters, and runs 43% slower. Using a dilation of 2 instead of 1
is twice as fast, but dramatically reduces performance. Using a stride of 2 instead of 3 runs half as
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Figure 5: Adding additional convolutional layers hurts performance. Error bars show the performance
spread over different values of kernel sizes and stride.

quickly, with only a small performance improvement. Increasing stride to 4 dramatically reduces
performance, though it does run faster. A larger kernel of 7 instead of 5 runs a bit faster overall
because it results in a slightly shorter sequence length for the transformer, but it doesn’t perform as
well.

Adding multiple layers of convolutions hurt performance, though adding additional layers does speed
up performance. Results are shown in Figure[5] The best performing 2-layer-conv approach scored
2-3% lower than the best 1-layer-conv and had convolutions with kernel size 3 and stride 2 and runs
10% faster than patchifying but gets 1% worse performance. The best 3-layer-conv approach scored
11-12% lower than 1-layer and had kernel size 2 and stride 2 and runs 42% faster than patchifying
but again gets worse performance. The increased speed here comes from increased downsampling of
the sequence length, which results in less attention for the transformer to do, to some degradation
in performance. The two layer approach here is very promising given the speedup and continued
exploration into its parameterization may yield increased performance. Unlike [Xiao et al., [2021]], we
do not see that additional layers increase performance — and unlike them, we do not even decrease
the size of the transformer, as the additional layers actually reduce the FLOPs of the model (though
they increase its parameter count).

3.3 Vector Quantization

Our best Vector Quantization approaches hurt performance by nearly 10%, adds 12% more parameters,
and runs 25-30% slower.

Since this approach can be applied after either Patch Embeddings or Convolutions, any slower choices
in those settings stack with the slowdowns in this setting. Vector Quantization gets dramatically
slower with large numbers of codes (we weren’t able to go above a few hundred, though models
like LLaMA use 32k tokens in the text-based setting and other language models can exceed 100k
tokens). Our initial configuration of 640 codes in just one group reduced the model speed by 33x, so
we weren’t even able to train it.

In order to get better performance, we scale the number of groups (i.e. the number of distinct
codebooks, each with separate codes). Our best configuration uses 64 codebooks with 32 codes
each and a total embedding dimension of 256. Thus each code has 256 / 64 = 4 dimensions, and are
concatenated with one another to form the output of the quantization step.

3.4 VQ-VAE Initialization

The VQ-VAE encoding scheme adds a huge number of parameters to the base vision transformer
classifier, whilst also degrading performance to a significant level. The VQ-VAE begets a single large
codebook with size of discrete latent space being 512 and each latent embedding has dimension of
64. It outputs encoding of size 4096, which is flattened to discrete codes of size 64 x 8 x 8. These
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Figure 6: Loss curves for training (a) VQ-VAE training on CIFAR-10 image reconstuction, (b)
training VQ-VAE encoder applied to early ViT layers for CIFAR10 classification
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Figure 7: (a) Training and (b) validation accuracy curves for the vg-vae experiments on CIFAR10.
The larger encoder initial size before the ViT transformer blocks slows down the training process and
eventually plateaus it at a much lower accuracy.

discrete representations from a trained codebook are used to classify using a ViT. Figure [f| shows the
training loss curves for this set of experiments.

The VQ-VAE encoder (before vector quantization) exceeds the base ViT by 200% more parameters.
In a variation of this application to control for the number of parameters in the encoding, a single
convolution layer replaces the VQ-VAE encoder, and then the latents are discretized with the VQ
layer, which improves the performance slightly over the VQ-VAE encoding but still under-performs a
ViT trained with a patchify initialization by a large margin.

At the end of 50 epochs of CIFARI10 training, table[T]shows the performance and compute analysis
for each method. Figure|/|shows the trends across epochs.

Table 1: VQ-VAE quantization experiments for 50 epochs

Encoding Val Accuracy (%) Params (M) Training Time (s)
VQ-VAE encoder + VQ + ViT  55.47 13.5 3528

Conv layer + VQ + ViT 61.47 4.9 2590

ViT Patchify 84 4.8 905

This suggests that VQ-VAE discrete codes trained for image reconstruction cannot be leveraged for
classification, and more task-specific training of an embedding space is the only way to leverage the
plug-and-play idea for using a trained image latent space and discretization method.

3.5 Mixed-Resolution Tokenization

Mixed Resolution Tokenizer, replaces the PatchEmbedding layer in the baseline ViT, keeping the
parameter count for the subsequent layers (Transformer block) exactly the same. It has a 12%



larger training time per epoch. This is due to the the forward passes through the saliency scorer to
calculate Score feq:[p] for each patch p.

We trained the baseline ViT, and Mixed-Res ViT to 30 epochs for CIFAR10 & CIFAR100 datasets.

At the end of these 30 epochs, the Mixed-Res ViT (80.40% for CIFAR10, 52.84% for CIFAR100) has
a higher validation accuracy than the baseline ViT (74.79% for CIFAR10, 44.75% for CIFAR100).
These results are provided in the graphs in Figure[8]
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Figure 8: Training Accuracy, Validation Accuracy, Training Time per Epoch compared for a baseline
ViT, and the same ViT with a Mixed Resolution Tokenizer replacing the PatchEmbedding layer.

4 Discussion

4.1 Limitations

Vector Quantize methods are well motivated due to their success in image reconstruction tasks, but
they fail to adapt to classification tasks.

Convolutional networks help improve the performance of the ViT in early layers, but depending
on the dataset and the size of the convolutional encoder (such as VQ-VAE encoder), it may worsen
performance and slow down the training.

Mixed-Resolution Tokenizer is distribution dependent. CIFAR10/100 has similar images as the
dataset on which the saliency scorer (ShuffleNet) is pre-trained: ImageNet. Applying this saliency
scorer to images from a different distribution, say medical images, instead of CIFAR10 might not
work.

4.2 Related and Future Work

Adaptive image tokenization methods such as employing a token learning module Ryoo et al.| [2021]]
using convolution and attention layers has been shown to perform well for video ViT in reducing the
depth of transformer layers and compute required for video recognition, and is a simple extension of
the idea of using convolutional layers in the early ViT stages. Other methods like learning multiple
adaptive codebooks instead of a single large codebook such as in VQ-VAE have previosuly been



used for image restoration and also show promise [Liu et al.|[[2023] as a potential direction to test the
trained latent space for classification. The marginal improvements in the mixed-resolution tokenizing
scheme, and the superior performance of the patchify method combined suggest that modifying the
patchify layer to compute adaptively learnt tokens for an efficient patchify module instead of a grid
based one would be a promising next step. The aforementioned methods have not however been
tested by their authors for simple image classification tasks, hence it forms a convincing basis for
extension of this survey.

Methods like VQ-GAN [Esser et al.|[2021]] are an extension of the VQ-VAE encoding idea, in which
a GAN discriminator is used to discriminate the reconstructed images from a VQ-VAE and a GAN
loss is backpropagated in addition to the VQ and reconstruction losses. This method outperforms
VQ-VAE in learning an efficient discretized codebook for use in image reconstruction and infilling,
but based on the results of our VQ-VAE experiments which adds a heavy parameter count to the base
ViT classifier and slows down training, the VQ-GAN idea will likely produce similar results—since
its latent space has been trained for image reconstruction tasks and not classification—with its rate of
forward data and backward gradient flow is severely slowed down for image classification with a ViT.

5 Conclusion

After our review of different options for featurizing an image before feeding it into the convolutional
network, we conclude that Patch Embeddings are a surprisingly robust and efficient approach. They
require few parameters, are computational cheap, and provide robust performance on downstream
tasks. Several layers of convolutions are a strong alternative; while they add many parameters to
the model, they downsample the sequence length which reduces the amount of expensive attention
steps that the transformer has to do and thus drastically speed up the model. Vector quantization
had potential for helping the model to learn more robust concepts but practically did not improve
performance and had significant computational costs. Vector quantize methods for a trained image
encoder-decoder network do not extend themselves to task-agnostic performance for reusing the
codebooks. Tokenizing schemes such as mixed resolution tokenizer reduces the number of input
pixels and demonstrates slight improvement over the baseline, suggesting that more experiments
in this direction of modifying the patchifying module would yield promising results in terms of
improving classification accuracy at reduced computational costs and training time.
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