
Optimizing Diffusion Models for Image Denoising

Adithya Iyer 1 Man Shu 1 Rhitvik Sinha 1

Abstract
Diffusion Models have proved the ability to pro-
duce high quality images based on score function
estimations, which in image modeling is often
seen as a Gaussian noise removal process. We
investigate whether this Gaussian noise removal
trained model can be used for actual image de-
noising, or in some cases filling in missing pixels
(imputation). We achieve this by conducting ex-
periments where we feed in partially noised im-
ages to various stages of the diffusion model to
observe the outputs of the de-noising behaviour.
We also build a noise conditioned diffusion model
to train the model to learn to de-noise and impute
images.

1. Introduction
Diffusion models have recently grown in popularity for im-
age generative tasks due to their nearly similar performance
to GANs, and have resulted in their adoption to various use
cases like Stable Diffusion[7]. The original DDPM [2] uses
a sequential de-noising process to de-noise random Gaus-
sian noise, and produces high quality outputs which have
been proven recently to outperform GANs [1].

Diffusion models have also proved the ability to produce
high quality images without the need for adversial train-
ing. One significant flaw of most diffusion models is that
they need numerous iterations to create an excellent clear
image, which makes diffusion models behave quite slower
than GANs. The backward process for denoising diffusion
probabilistic models (DDPM) approximates the reverse of
the forward process which includes multiple steps. Another
model Denoising Diffusion Implicit Models (DDIM) pro-
posed by Song et al. [9] is based on non-Markovian noising
process by altering reverse noise’s variance compared to

1Department of Computer Science, Courant Institute of Math-
ematical Science, New York University, New York. Corre-
spondence to: Adithya Iyer <ai2257@nyu.edu>, Man Shu
<ms12677@nyu.edu>, Rhitvik Sinha <rs8438@nyu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

DDPM, which can shorten timesteps. Furthermore Nichol
& Dhariwal [6] found that this model behaves well when
sampling steps are less than 50.

In this paper, we want to discuss using diffusion models in
the paradigm of noise removal or imputation. We do this is
2 broad ways :

1. By feeding in noised image to a regularly trained
DDPM, considering class conditioned and uncondi-
tioned cases.

2. By training a diffusion model conditioned on a noisy
or incomplete image.

We notice that the diffusion model noise-removal behaviour
in the intermediate regions is significantly affected by the
noise present in the input image. We also observe that
noised-image conditioning on diffusion models works better
when you remove pixels, than adding Gaussian noise.

2. Background
2.1. DDPMs

We briefly go over the formulation of DDPMs from Ho et
al. [2]. Denoising diffusion probabilistic models (DDPMs)
are latent variable models of the form below, where x1,...,
xT are latents of the same dimensionality as x0 given a data
distribution q(x0).

pθ(x0) =

∫
pθ(x0:T)dx1:T (1)

pθ(x0:T) = pθ(xT)

T∏
t=1

p
(t)
θ (xt−1|xt) (2)

To fit the data distribution, optimize the variational lower
bound (VLB) on negative likelihood:

E [log pθ(x0)] ≤ E
q
[− log pθ(x0:T) + log q(x0:T |x0)] =: L

(3)

DDPM fix the approximate posterior q(x1:T |x0) and use
the following Markov Chain with Gaussian transition ac-
cording to variance schedule β1,...,βT with notation αt :=

Optimizing Diffusion Models for Image Denoising

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ||ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t)||2

6: until converged

Algorithm 2 Sampling
1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
1−βt

(
xt − βt√

1−αt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

∏t
s=1(1− βs):

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1) (4)

q(xt|xt−1) := N
(√ αt

αt−1
xt−1,

(
1− αt

αt−1

)
I
)

(5)

The forward process has a remarkable property which is
sampling xt in closed form at any timestep:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) (6)

Then xt could be written as a linear combination of x0 with
noise ϵ ∼ N (0, I):

xt =
√
αtx0 +

√
1− αtϵ (7)

We choose pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
and fix Σθ(xt, t) = σ2

t I. When setting αT close enough
to 0, q(xT |x0) converges to a standard Gaussian for all x0.
Intuitively, we set pθ(xT) := N (0, I). When the length T
for the forward process is sufficiently large, the backward
process will be much closer to a Gaussian, which means the
generative process approximates well.

2.2. Conditioning DDPMs

Training diffusion models with class conditionality is impor-
tant to obtain precise images of particular classes we want.
Nichol & Dhariwal [6] train a classifier and use classifier gra-
dients to train DDPM to fit a class. Although we agree with
this approach, training a classifier seems unnecessary. The
conditional model in this paper is based on Classifier-Free
Diffusion Guidance [3] which includes a linear combination

of the score estimates from conditional diffusion models
pθ(z, c) and jointly trained unconditional diffusion models
pθ(z). Conditional diffusion model involves two embedding
timestep t and context c. Recall Baye’s rule:

p(y|x) = p(x|y)p(y)
p(x)

(8)

∇x log p(y|x) = ∇x log p(x|y)−∇x log p(x) (9)

Then the formula with classifier guidance:

∇x log pγ(x|y) = (1− γ)∇x log p(x) + γ∇x log p(x|y)
(10)

Define ψ(zt) for noise zt at timestep t, and ψ(zt, c) for
context c and timestep t. Based on this, the formula for the
score estimator with weight ω ≥ 0:

ψt = (1 + ω)ψ(zt, c) + ωψ(zt) (11)

Imputation or image transformation as a concept is not new
to diffusion models. Saharia et al. [8] use diffusion models
for in-painting, colorization and super resolution. VAEs
particularly have been studied for image denoising, such
as Pascal et al. [10], or image imputation as in Mattei &
Frellsen [5]. Authors have also explored conditional models
for sematic mixing [4].

3. Methods
We run 3 levels of experiments on MNIST and Fashion-
MNIST to see how diffusion models perform in a de-noising
context.

3.1. Adding noisy images to intermediate locations in
the diffusion chain

We apply Gaussian noise to clean images, and feed these
images to various time-steps in the diffusion process. The
Gaussian noise scheduler is chosen to be the same as the
one the models is trained on, to enable coherent inference
of results. We apply noise in intervals of 30% and 60%,
and feed this noisy image into the diffusion chain at various
time-steps (T = 100%, 50%, 25%, 100% meaning the start
of the noise removal and smaller percentages implying less
noisier images.).

Furthermore, we also test the effect of running multiple
cycles of the diffusion chain on the image. Basically, we
get a de-noised output, and pass it again into the the model,
multiple times.

3.2. Effect of conditioning the Neural Network on a
noisy image

In Section 3.1, we largely train a regular and a class con-
ditioned DDPM, and use it directly to denoise. In essense,

Optimizing Diffusion Models for Image Denoising

we are using the denoising aspect of a diffusion models as
a feature and applying it for an alternate purpose. In this
subsection, we specifically train a conditional DDPM for
de-noising purpose. We do so by adding additional condi-
tioning to a single link in the neural network.

Our traditional UNet, which is the building block of the
neural network, in essence predicts p(Xt−1|Xt, t, c), where
t is the time-step and c is the context, or the class label. We
add another condition to the UNet, namely the noised input
image. This makes the UNet at timestep T become:

UNett = p(Xt−1|Xt, t, c,XNoisedInput) (12)

In a more score functional notation, this gives us the condi-
tional score on the noised image which we want to denoise.

−∇xlogp(xt−1|xt, t, x, xNoisedInput) (13)

We modify the UNet which we use in our model by simply
concatenating an additional channel to the input to each
UNet. This additional channel contains the image which we
want to denoise.

In an intuitive sense, we are showing a diffusion model a
blurry image as a reference, and then training it to learn how
to paint a de-noised image.

3.3. Classifier free conditioning with time-step governed
weights

We noticed that the method in Section 3.2 worked partic-
ularly well where the conditional signal was strong. For
instance, removing a fraction of pixels from an image still
leaves the image with enough interpret-able latent space
information to help the model train, since a majority of the
pixels are from the population distribution p(x).

This is untrue for Gaussian noised images, since the en-
tire image is from a different unseen distribution, that is,
p(x|xnoisy) is not easily learn-able. We also observed this
while conducting experiments, where essentially the model
was learning very well to condition on the noised image,
but was unable to learn the denoised distribution once it has
learnt the noisy distribution.

Hence we suggest an alternative solution to this problem,
where we essentially condition the model on the noisy input
image less once it has learnt the noisy distribution. Ba-
sically, if the image Xt is very close to the noisy input
XNoisedInput, we condition the model less on the noisy
image. We do this probabilistic-ally by the following trick,
where we define a probability of conditioning on each time-
step.

pconditioning(t) = 1− e
||Xt−XNoisedImage||2

T (14)

What this basically means is that as the image in the diffu-
sion chain is closer to the noised input image, we should
decrease the classifier guidance and increase the score gra-
dients from the actual image distribution.

In practice, we achieve this by masking the conditioning
layer in the UNet with a probability pconditioning. So the
model significantly learns from the conditional distribution
at the start of the denoising process, but learns less from the
conditioning as it reaches the later time-steps in the reverse
process. We notice that setting T = 1 seems to do a good job
in modulating pconditioning between 0.2 and 0.8.

4. Experiments
We first run experiments by adding various levels of noisy
images to various timesteps of the diffusion process.

4.1. Conditional - Adding varied noise to various
timesteps

4.1.1. ADDING X% NOISE TO THE TIMESTEP WHICH
EXPECTS EXACTLY X% NOISE

We added a 30% noised image to an image, and fed it into
the 70% time-step of the reverse diffusion process (where
it expects 30% noise). As expected, the model worked
perfectly for all images, which imply that the diffusion
model has learnt the intermediate distributions perfectly, as
can be seen in Fig. 1.

Figure 1. (From left to right: Original Image, Noisy Image Input,
all diffusion time-steps till final generated image.) Adding right
amount of noise to the right location.

4.1.2. ADDING X% NOISE TO THE TIMESTEP WHICH
EXPECTS LESS THAN X% NOISE

We added a 30% noised image to an image, and fed it into
the 75% time-step of the reverse diffusion process (where
it expects 25% noise). We observe that the model does
denoise, but does not give us the sharp clarity as it did in the
previous image. This can be observed in Fig.2.

Optimizing Diffusion Models for Image Denoising

Figure 2. (From left to right: Original Image, Noisy Image Input,
all diffusion time-steps till final generated image.) Adding more
noise to the time-step which expects less noise.

4.1.3. ADDING X% NOISE TO THE FIRST TIME-STEP
ONLY, AND RUNNING REPEATEDLY (40 TIMES)

We added a 30% noised image to an image, and fed it into
the last time-step of the reverse diffusion process (T =0,
where it expects a nearly noiseless image). We observe
some de-noising, but largely as a consequence of Gaussian
smoothing due to repeated loops of UNett0 . This can be
observed in Fig.3.

Figure 3. (From left to right: Original Image, Noisy Image Input,
all diffusion time-steps till final generated image.) Running only
the last UNet (T = 1), 40 times to check effect of repetition.

4.1.4. ADDING X% NOISE TO THE TIME-STEP WHICH
EXPECTS MORE THAN X% NOISE

We added a 30% noised image to an image, and fed it into
the first time-step of the reverse diffusion process (T = 200th
step or 100%, where it expects pure noise). We observe
severe addition of noise initially, followed by subsequent
denoising. The important observation here is that the final
generated image is not the exact denoised image, but a
different sample from the same class. This can be observed
in Fig.4.

Figure 4. (From left to right: Original Image, Noisy Image Input,
all diffusion time-steps till final generated image.) Adding a less
noisy image to a time-step which expects more noisy inputs- in
a conditional DDPM.
Performing the same experiment to FASHION-MNIST via
an unconditional diffusion model gives even greater clarity

on the fact that the diffusion models ends up de-noising to
a completely different sample from the image distribution.
This can be observed in Fig. 5, where an input noisy image
of a pant leads to the model generating a dress.

Figure 5. (From left to right: Noisy Image Input, all diffusion time-
steps till final generated image.) Adding a less noisy image to a
time-step which expects more noisy inputs- in a un-conditional
DDPM. Notice how the generated image is of an entirely differ-
ent class.

4.2. Image Imputation with conditional DDPM

We now train a conditional diffusion model on images with
missing pixels, and force it to generate imputed outputs, as
explained in Section 3.2. The model essentially learns the
following distribution.

p(x|xMissingPixels) (15)

The model does a great job of filling in the missing pixels,
which can be seen in Fig. 6

Figure 6. (From left to right: Original Image, Image Input with
missing pixels, all diffusion time-steps till final generated image.)
Our conditional Diffusion model conditioned on the noisy im-
age does a great job in pixel imputation.

We apply the same method by conditioning on a Gaussian
noised image, but the model did not seem to learn how
to de-noise it, which resulted in us engineering the proba-
bilistic method explained in section 3.3. The results of our
probabilistic trick are shown in the next subsection.

4.3. Image Denoising with Conditional DDPM,
probabilistic weights

We now train a conditional diffusion model on images with
random Gaussian noise, and force it to generate de-noised
outputs, as explained in Section 3.3. The model essentially
learns the following distribution.

Optimizing Diffusion Models for Image Denoising

p(x|xNoisyImage) (16)

The model does a great job of denoising because of the
probabilistic conditioning we apply which affects the later
layers of the diffusion reverse process. The outputs can be
seen in Fig. 7.

Figure 7. (From left to right: Original Image, Noisy Image Input,
all diffusion time-steps till final generated image.) Our condi-
tional Diffusion model conditioned on the noisy image does a
great job in denoising.

5. Conclusion
We can observe that the de-noising behaviour of DDPMs
works in a temporal order, where each link in the diffusion
reverse process expects a certain noise level, and providing
a less noisy image for de-noising leads to unnecessary noise
addition and improper score function. This is clearly observ-
able when we add a less noisy image to the first time-step
of the DDPM- we get a completely different class as the
output. The effect of giving a more noisy image to later in
the diffusion chain leads to better outcomes, but is still not
completely sufficient.

All of these mean that using a regularly trained diffusion
model for de-noising works well only if we can estimate the
exact noise level of the image, and then feed in the image at
the right place in the diffusion process. This is impractical
in a real world setting, since knowing the exact magnitude,
and type of noise is difficult. We could apply Fourier based
transforms methods to get an approximation of the amount
of high frequency noise, but it is an inefficient way to get
around the problem. Furthermore, Fourier transform meth-
ods for noise estimation would only work well for certain
classes of noise such as Gaussian, and would fail with pixel
removal type of noise.

Thus building a model conditioned on the noise is of impor-
tance, so the diffusion model can learn to generate complete
images based on a memory of the noisy input. We prove
that this methods works brilliantly when we remove pixels,
and can be made to work with Gaussian noised images if
we apply our probabilistic trick. Thus, we suggest that for
de-noising purposes, a conditional diffusion model is the
right way to go.

To confirm our assertion, we suggest applying the tech-
niques we explain here to larger datasets like CIFAR-10
or Imagenet-Net as the obvious next step. The model will
require certain modifications to account for additional chan-
nels, but the informational flow and observations on MNIST
should transfer to these larger datasets.

Optimizing Diffusion Models for Image Denoising

References
[1] Prafulla Dhariwal and Alexander Nichol. “Diffusion

models beat gans on image synthesis”. In: Advances
in Neural Information Processing Systems 34 (2021),
pp. 8780–8794.

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denois-
ing diffusion probabilistic models”. In: Advances in
Neural Information Processing Systems 33 (2020),
pp. 6840–6851.

[3] Jonathan Ho and Tim Salimans. “Classifier-free diffu-
sion guidance”. In: arXiv preprint arXiv:2207.12598
(2022).

[4] Jun Hao Liew et al. “MagicMix: Semantic Mix-
ing with Diffusion Models”. In: arXiv preprint
arXiv:2210.16056 (2022).

[5] Pierre-Alexandre Mattei and Jes Frellsen. “MIWAE:
Deep generative modelling and imputation of incom-
plete data sets”. In: International conference on ma-
chine learning. PMLR. 2019, pp. 4413–4423.

[6] Alexander Quinn Nichol and Prafulla Dhariwal. “Im-
proved denoising diffusion probabilistic models”.
In: International Conference on Machine Learning.
PMLR. 2021, pp. 8162–8171.

[7] Robin Rombach et al. “High-Resolution Image Syn-
thesis With Latent Diffusion Models”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). June 2022,
pp. 10684–10695.

[8] Chitwan Saharia et al. “Palette: Image-to-image diffu-
sion models”. In: ACM SIGGRAPH 2022 Conference
Proceedings. 2022, pp. 1–10.

[9] Jiaming Song, Chenlin Meng, and Stefano Ermon.
“Denoising diffusion implicit models”. In: arXiv
preprint arXiv:2010.02502 (2020).

[10] Pascal Vincent. “A connection between score match-
ing and denoising autoencoders”. In: Neural compu-
tation 23.7 (2011), pp. 1661–1674.

