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Abstract

LiDAR 3D segmentation in LiDAR-based point clouds is
essential for various applications, such as autonomous ve-
hicles and robotics. But accurate and efficient segmenta-
tion of point clouds remains a critical challenge, specifi-
cally due to the issue of information disconnection and lim-
ited receptive fields for distant sparse points. The current
state-of-the art model SphereFormer, employs radial win-
dow self-attention to partition the space into multiple non-
overlapping, narrowly elongated windows. Building upon
SphereFormer, in this work we introduce a modified ap-
proach ‘Adaptive SphereFormer’ characterized by its dy-
namic adjustment of the radial angle, θ, contingent upon
the distance of a point from the origin. This dynamic ad-
justment approach not only adeptly manages memory usage
associated with large static window sizes, but also enhances
segmentation accuracy, achieving an increment of around
1% in the overall mean Intersection over Union(mIOU).
Our results demonstrate that this adaptive strategy boosts
the model’s capacity to process distant, sparser points,
while simultaneously optimizing computational resources.
The GitHub code can be found here.

1. Introduction
The extensive use of LiDAR technology has significantly

advanced 3D vision modeling, especially in point cloud
segmentation. Despite notable advancements, a consis-
tent obstacle remains in effectively managing distant, sparse
points within LiDAR datasets. Due to their lower density,
these points pose a challenge in gathering information from
neighboring points, as there are fewer neighbors available.
This situation leads to issues of information disconnection
and a limited receptive field. Fig. 1 clearly shows the how
density of points varies with distance.

Early methods in this field processed the point cloud by
partitioning the 3D space into a series of 3D voxels with
cubic windows as shown in Fig. 2a using variants of sparse
convolutions. However, this approach faced challenges in
determining the optimal voxel size. The smaller voxels led

Figure 1. Varying-sparsity property of LiDAR point clouds. The
dense close car is marked with a green circle and the sparse distant
bicycle is marked with a red circle.

to inadequate information transfer, whereas the larger vox-
els presents memory constraints. To overcome these limita-
tions, various techniques were employed to expand the re-
ceptive fields of these points, such as window self-attention
[10], dilated self-attention [12], and large-kernel CNNs [3].
These methods primarily use a strategy of layering local op-
erators to increase the receptive field. However, in areas
far from the point of origin where the space is exceedingly
sparse, these models, even with multiple layers, struggle to
grasp the full scope of the scene. This highlights the impor-
tance of having sufficiently informative lower-level features
to enhance the performance gained from layering multiple
levels.

SphereFormer [9] addressed this issue by introducing ra-
dial windows as opposed to traditional cubic windows as
shown in Fig. 2b. It utilizes spherical coordinates (r, θ, ϕ)
to represent the 3D space, dividing the scene into several
distinct, non-overlapping windows. Within each window,
the model applies attention across all points to derive the
final representation of a point. This design leads to long
and narrow windows. As a result, when the model applies
attention, even to points that are farther away, it can incor-
porate information from a broader range of points, leading
to richer and more detailed representations.

Despite the improvement of using elongated windows
in SphereFormer, a limitation arises from the fixed width
of these radial windows, echoing the same challenge faced
with cubic windows in determining the optimal window

https://github.com/yas777/Adaptive-Sphereformer/tree/feature


(a) Cubic Window (b) Static Radial Window (c) Discrete Dynamic Radial Window

Figure 2. (a) Used in Both, (b) Used in SphereFormer, (c) Used in Adaptive SphereFormer.

width without compromising performance. To address this,
in our approach we progressively expanded the window
size with distance from the origin as shown in Fig. 2c. This
adaptation results in windows that are not only longer, but
also wider for points further away, thereby enabling the
inclusion of an even greater number of points for analysis.

2. Related Work

Our work, which focuses on enhancing LiDAR-based
3D segmentation through dynamic radial window self-
attention, is deeply rooted in the advancements of 3D Li-
DAR segmentation and the utilization of sparse convolu-
tions. In this context, we review key contributions and
methodologies that have shaped the current landscape of
this field.

2.1. LiDAR 3D Segmentation

The segmentation of 3D point clouds, particularly those
obtained from LiDAR, is a crucial task with various appli-
cations such as autonomous driving and robotics. Tradi-
tional methods in this domain can be broadly categorized
into view-based, point-based, and voxel-based approaches.

View-based Methods: These methods involve trans-
forming LiDAR point clouds into a range view [13,16], or a
bird-eye view [18], simplifying the three-dimensional data
into a more manageable two-dimensional format for feature
extraction. This approach simplifies the processing of 3D
data but, it leads to a loss of critical geometric information.

Point-based Methods: This approach directly works
with the raw point cloud data, leveraging point features and
positions, focusing on capturing the intricate details present
in the data [10, 14, 15].

Voxel-based Methods: Solutions involve dividing the
3D space into regular voxels (volumetric pixels) [4, 8] and
then applying sparse convolutions. This approach is par-

ticularly effective in managing the sparsity of LiDAR data,
allowing for efficient processing of large-scale point clouds.

2.2. Sparse Convolutions

Sparse convolutions have become a crucial technique
in deep learning, particularly in the fields of computer vi-
sion and high-dimensional neural networks. They provide
a computationally efficient alternative to traditional con-
volutions by focusing on non-zero elements in the data,
which is advantageous for handling sparse inputs. The con-
cept of sparse convolutions was initially introduced to ad-
dress the inefficiency of standard convolutions in handling
sparse data. It was shown that sparse structures in deep
neural networks has significant computational savings with-
out compromising performance [7]. The development of
Sparse Convolutional Neural Networks (SCNNs) was a sig-
nificant milestone, as it proposed an optimized SCNN that
efficiently processed high-dimensional data [2], and demon-
strated its effectiveness in tasks such as 3D object detection
and segmentation. Furthermore, the use of sparse convolu-
tions in processing 3D data, particularly in the context of
LiDAR and point cloud processing, has also been worked
on [14], leveraging sparse convolutions to significantly im-
prove the efficiency and accuracy of 3D object detection
models.

2.3. Vision Transformers

The utilization of Vision Transformers (ViT) in the
field of LiDAR-based 3D point cloud recognition repre-
sents a significant shift from conventional convolutional
approaches, offering new avenues for capturing complex
spatial relationships. Our work with the Adaptive Sphere-
Former, which incorporates radial window self-attention, is
deeply influenced by the evolution of Vision Transformers
and their application in 3D point cloud processing.

In 2D Image Processing: Vision Transformers (ViT)
[5] have revolutionized 2D image processing. Initially



designed for language tasks, ViT adapts to image data
by tokenizing image patches and leveraging Transformer
encoders. Variants like the Pyramid Vision Transformer
(PVT) [17] and Swin Transformer [11] introduced hierar-
chical structures and window-based attention, enhancing
the model’s capability to capture long-range dependencies
in 2D images.

Adaptation to 3D Point Clouds: The application of
Transformers to 3D point cloud data, such as LiDAR, is
challenging due to data sparsity and irregularity. As dis-
cussed above, initial adaptations of 2D Transformer models
to 3D data often overlooked these unique aspects. However,
recent methods have started to tailor Transformer architec-
tures to better handle the varying sparsity of LiDAR point
clouds.

Radial Window Self-Attention: The SphereFormer
represents a significant advancement in this area, introduc-
ing radial window self-attention specifically for LiDAR-
based 3D recognition. This technique partitions the space
into elongated windows, effectively connecting dense and
sparse regions of the point cloud. This approach is particu-
larly effective in processing distant points, addressing a key
challenge in LiDAR data interpretation.

3. Baseline Architecture
The SphereFormer module functions as a versatile plu-

gin that seamlessly integrates into established mainstream
models like SparseConvNet [7,14], MinkowskiNet [4], and
local window self-attention [10].

3.1. Transformer

As illustrated in Fig. 2, SphereFormer adopts a unique
approach by partitioning the space using radial windows in-
stead of traditional cubic windows. The space is divided
into radial windows with widths defined by ∆θ and ∆ϕ in
the (r, θ, ϕ) co-ordinate space. Consequently, a point pi is
associated with the window ( θi

∆θ , ϕi

∆ϕ ). Subsequently, all
the points within the radial window undergo attention oper-
ations according to the following equations

q̂ = f ·Wq, k̂ = f ·Wk, v̂ = f ·Wv

where f ∈ Rn×c denotes the input features of the window,
Wq,Wk,Wv ∈ Rc×c are the linear projection weights. The
projected features q̂, k̂, v̂ ∈ Rn×c are then split into h heads
resulting in vectors q, k, v ∈ Rh×n×d. For each head, a dot
product is performed between queries and keys to obtain
attention weights, and the final features are computed as the
weighted sums of values,

attnk = softmax(qk · kTk )

ẑk = attnk · vk

Figure 3. Adaptive SphereFormer Architecture

where qk, kk, vk ∈ Rn×d represent the features of kth head,
and attnk ∈ Rn×n represents the corresponding weights.
Finally, features from all the heads are concatenated and
linear projected with Weights Wproj ∈ Rc×c to obtain the
final output z ∈ Rn×c

ẑ = concat(ẑ0, ẑ1, · · · , ẑh−1)

z = ẑ ·Wproj .

This structure is stacked multiple times to obtain richer rep-
resentations.

3.2. Positional Embedding

In the context of the 3D point cloud network, the input
features already include the absolute xyz positions, elimi-
nating the need for the application of absolute position en-
coding. Stratified Transformer [10] attempts to add rela-
tive position embeddings, by dividing the window into uni-
form intervals. This division aims to convert continuous
relative positions into integers. While this strategy is ef-
fective for smaller cubic windows, it encounters challenges
when applied to large and narrow windows. So, the Sphere-
Former adopted an exponential splitting strategy which cre-
ates finer intervals as we move closer to the center as illus-
trated in Fig. 4 So, now given two points in a radial window
(ri, θi, ϕi) and (rj , θj , ϕj) the relative position embedding
(idxr

ij , idx
θ
ij , idx

ϕ
ij) is given by

idxr
ij =


−max(0, log2

(
−rij
a

)
)− 1 if rij < 0

0 if rij = 0

max(0, log2
( rij

a

)
) if rij > 0

idxθ
ij =

⌊
θij

intervalθ

⌋
, idxϕ

ij =

⌊
ϕij

intervalϕ

⌋
,

idxx = idxx +
L

2
, x ∈ {r, θ, ϕ},

where a is a hyper-parameter to control the starting split-
ting interval, and L is the length of the positional embed-
ding tables. L

2 is added to indices to make sure they are
non-negative.



Figure 4. Exponential Splitting

The above indices (idxr
ij , idx

θ
ij , idx

ϕ
ij) are then used

to index their positional embedding tables tr, tθ, tϕ ∈
RL×h×d to find the corresponding position encoding
prij , p

θ
ij , p

ϕ
ij ∈ Rh×d, respectively. Then, we sum them up

to yield the resultant positional encoding P ∈ Rh×d, which
then performs dot product with the features of qi and kj ,
respectively. Then this positional encoding is incorporated
into attention mechanism such that weights are proportional
to the distance between the points. The final attn equation
is as follows

p = prj + pθij + pϕij , (1)

pos biask,i,j = qTk,i · pTk + kTk,j · pTk , (2)

attnk = softmax(qk · kTk + pos biask), (3)

where pos bias ∈ Rh×n×n is the positional bias to the
attention weight, qk,i ∈ Rd means the the k-th head of the
i-th query feature, and pk ∈ Rd is the k-th head of the posi-
tion encoding p.

Dynamic Feature Selection Prior studies have demon-
strated that cubic windows are effective for points that are
closely packed together. Building on this, the Sphere-
Former allocates half of the multi-head attention mecha-
nism’s heads to process fixed-size cubic attention. The
remaining heads were tasked with calculating radial win-
dow attention, as previously detailed. This design allows
the model to selectively focus on different aspects: it may
opt for the more detailed radial window view for distant
points, while preferring the cubic attention for points that
are nearer.

3.3. Adaptive SphereFormer

To adapt to the variable sizes of the windows, the radial
window was segmented into three ranges: from r ∈ [0, 20),
r ∈ [20, 50), and r ∈ [50,∞). These specific intervals
were chosen based on significant changes observed in the
results Fig. 5 of the SphereFormer paper. A challenge arises
with points that lie at the boundary of these radial segments
since they would only be aligned with adjacent points that
are only within the same segment. To counteract this, each

window is extended by a margin swin as implemented in
Lai et al. (2022) [10], into adjacent windows for better in-
tegration of edge points.

As illustrated in Fig. 2, what was initially a single black
interval has been subdivided into three distinct zones, which
are marked by black, blue, and red. This division allows to
follow a different width in θ and ϕ direction. The final struc-
ture of the model is represented in Fig. 2c, which showcases
these three divided intervals.

4. Dataset
SemanticKITTI [1] is a large-scale outdoor scene data

set for point-cloud semantic segmentation. It is derived
from the KITTI Vision Odometry Benchmark [6] which it
extends with dense point-wise annotations for the complete
360 field-of-view of the employed automotive LiDAR. The
dataset consists of 22 sequences. Overall, the dataset pro-
vides 19130 point clouds for training and 4107 for testing.

5. Implementation & Training Details
The underlying model structure is a UNet-based struc-

ture with five levels with feature dimensions of [32, 64, 128,
256, 512]. At each stage, the SphereFormer is integrated
into the system. For the baseline SphereFormer setup, the
window sizes for both ∆θ and ∆ϕ are set at 2.5◦. Train-
ing was carried out using a batch size of 32 degrees and a
poly rate scheduler with a power of 0.9. The learning rate
was set at 0.006, and the weight decay parameter was set to
0.01. In the Adaptive SphereFormer version of the model,
the window sizes for the θ and ϕ axes were adjusted to 1.5◦

in r ∈ [0, 20), 2◦ in r ∈ [20, 50) and 2.5◦ in r ∈ [50,∞)
with swin of 0.5◦ in θ and ϕ directions and 10m in radial di-
rection. Training was carried out on two RTX 8000 GPUs,
each with 48GB of memory.

6. Experiments
Initially, we examined the correlation between the mean

Intersection over Union (IoU) and the distance from the
point of origin in Fig. 5. There was a noticeable decrease
in IoU at a radial distance of 20 units, followed by a sharp
decrease between radial distances of 40 to 50 units. These
observations informed our decision on where to segment the
radial window.

Subsequently, we analyzed how the performance of the
model varied with increasing window size in both the θ and
ϕ directions. Fig. 6 displays the variations in mean IOU cor-
responding to window sizes of 1.5◦, 2◦, and 2.5◦, in regions
classified as close (r < 20), medium (r > 20andr < 50),
and far (r > 50). However, an attempt to increase the win-
dow size further to 3◦ led to memory constraints. These
findings were instrumental in determining the optimal width
for the windows in three intervals.



Figure 5. Overall Mean IOU and Mean Accuracy for the baseline
model based on the distance of the object.

Figure 6. Our method vs. baseline. We trained from the Sphere-
Former papers. Our method is able to achieve nearly the same
accuracy for close objects while outperforming the baseline on far-
ther objects, as expected.

Figure 7. Baseline Model: mIoU vs θ vs distance

Figure 8. Proposed Future Work: Continuous Dynamic Radial
Window

7. Results

Fig. 6 and Fig. 7 show that Adaptive SphereFormers
achieve a better mIoU score (66.59%) than the baseline
SphereFormers (65.64%) over 40 epochs of training and ob-
served a significant increase for classes such as trucks, park-
ing, fences, and buildings at the SemanticKITTI segmenta-
tion task. While either of the models have not reached con-
vergence at the time of writing this report (owing to the sub-
stantial training time of 78 minutes per epoch), these pre-
liminary results are a promising step towards an improved
state-of-the-art in the 3D LiDAR segmentation task.

8. Conclusion & Future Work

The observed results confirm our empirically derived hy-
pothesis that a larger radial angle (θ) is more conducive to a
better segmentation result at greater distances from the sen-
sor. As an extension to this idea, instead of increasing the
window sizes at discrete intervals, we can define the win-
dow size as a continuous function of the distance from the
sensor (see: Fig. 8). It also remains to be seen whether this
change is task-agnostic, as we have not tested if ‘Adaptive
SphereFormer’ improves upon the performance of the base-
line SphereFormer at the 3D LiDAR Object Detection task.
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